Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
نویسندگان
چکیده
Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus-resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino-terminal mutants. Both NH2- and COOH-terminal mutants retained insulin-dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin-dependent redistribution of GLUT-4. We conclude that the phenylalanine-based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes.
منابع مشابه
Mutational analysis of the carboxy-terminal phosphorylation site of GLUT-4 in 3T3-L1 adipocytes.
The carboxy terminus of GLUT-4 contains a functional internalization motif (Leu-489Leu-490) that helps maintain its intracellular distribution in basal adipocytes. This motif is flanked by the major phosphorylation site in this protein (Ser-488), which may play a role in regulating GLUT-4 trafficking in adipocytes. In the present study, the targeting of GLUT-4 in which Ser-488 has been mutated ...
متن کاملFifty Percent Ethanolic Extract of Momordica charantia Inhibits Adipogenesis and Promotes Adipolysis in 3T3-L1 Pre-Adipocyte Cells
Background: Natural products have gained importance recently for the treatment of obesity and its complications, partly because of the side effects of modern drugs.Hence, we aimed to study and compare the effect of varying concentrations of Momordicacharantiaon adipogenesis and adipolysis using 3T3-L1 pre-adipocyte cell lines. Methods: 3T3-L1 pre-adipocytes were procured from the National Ce...
متن کاملGlucosamine-induced insulin resistance in 3T3-L1 adipocytes.
To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosp...
متن کاملAENDO January 41/1
Heart, Emma, Woo S. Choi, and Chin K. Sung. Glucosamine-induced insulin resistance in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 278: E103–E112, 2000.—To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a doseand time-dependent manner (maximal effects at 50 mM glucosam...
متن کاملDevelopment of a Novel Anti-Obesity Compound with Inhibiting Properties on the Lipid Accumulation in 3T3-L1 Adipocytes
Background: Obesity as a developing global challenge can be characterized by increase in adipocyte number and size arising from adipogenesis. Control of adipogenesis, as a potential strategy, can prevent and manage obesity. So far, the effectiveness of herbal medicine and active ingredients therapies for obesity and metabolic syndrome treatment has been investigated. In this study, a novel comb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 130 شماره
صفحات -
تاریخ انتشار 1995